
.net technique javascript

90 .net november 2009

Title inflation Nothing destroys our nice tabbed interface quite as quickly as long
headings, so we need to provide an alternate label for the associated tab

 �Knowledge needed Basic JavaScript, (x)HTML, CSS

 �Requires Text editor

 Project time 30-45 minutes

 In the last issue, I walked you through how to create a very
simple tabbed interface from semantically marked-up content
(if you missed issue 194, there’s a PDF of part one on the CD).

Now, we’ll revisit the JavaScript we wrote with a focus on making it more
flexible and more accessible.

As you recall, the script we wrote segments content based on the natural
language breaks created by headings. And, in the case of our example recipe,
the script functioned perfectly because the headings were short and sweet –
‘Ingredients’, ‘Directions’, etc. But if this same script is applied to content with
lengthier headings, the results would not be pretty (as the screengrab below
shows). It would be simple for us to brush this off and require short titles from
those who want to use the script, but that isn’t very accommodating. In order
to be truly useful, our script should offer a way for content authors to write
without sacrificing the clarity of their prose, while simultaneously ensuring
that the tabbed interface itself doesn’t become unusable.

Looking at the problem from the perspective of a content author and a
semanticist, the solution is clear: we need to provide an alternate label for the
associated tab. That label is, in essence, advisory information about the section,
and HTML just so happens to include an attribute – title – that serves that
very function. Placing a title on the various heading levels grants authors full
control over both the prose and the interface.

With a clear plan to accommodate alternate content for the tabs, we can
adjust our script to take advantage of it. In our original script, we have code that

 JavaScript create
a tabbed interface
 Part two In the last issue, Aaron Gustafson explained how to create a tabbed interface using
CSS and JavaScript. Now he focuses on making the JavaScript more flexible and accessible

worked great for handling shorter headings, so we can keep that, but we also
need to be able to handle the new title-based tab labels, so we should tuck that
into a conditional statement. If the heading has a title we’ll use that, but if it
doesn’t, we’ll default to the old method of grabbing the heading content.

 heading = folder.getElementsByTagName(_tag)[0];�
 addClassName(heading, ‘hidden’);�
 tab = _els.li.cloneNode(true);�
 tab.setAttribute(‘id’, _id + ‘-’ + i + ‘-tab’);�
 tab.onclick = swap;�
 tab.innerHTML = heading.innerHTML;�
 heading = folder.getElementsByTagName(_tag)[0];�
 if (heading.getAttribute(‘title’)){�
 tab.innerHTML = heading.getAttribute(‘title’);�
 } else {�
 tab.innerHTML = heading.innerHTML;�
 addClassName(heading, ‘hidden’);�
 }�

Note: In the case of the alternate tab label, the redundancy of having a
matching tab label and heading is no longer a concern, so we won’t need to
add a class of hidden to the real heading in that instance.

We now have a much more flexible version of TabInterface, but we haven’t
explored the accessibility of this widget beyond the use of positioning to hide
content. Most devs would stop at this point, pat themselves on the back and
go out for a pint, assuming that most users of assistive technologies surf with
JavaScript turned off and that those who don’t would be accommodated by the
content-hiding method we employed. I’m not so easily satisfied. Are you?

When JavaScript-based interactivity began spreading across the web like
wildfire (thanks in no small part to the advent of Ajax), several people within
the accessibility community began to realise that JavaScript and accessibility
need not be mutually exclusive; in fact some, most notably Derek Featherstone,
began evangelising that JavaScript could even improve accessibility.

The key to making assistive technology and JavaScript get along was
finding a mechanism by which the markup could declare how it was being
used so that screen readers and other devices would be capable of letting the
user know what was happening and how to interact with various JavaScript-
driven widgets. At the W3C, this concept was realised in the Web Accessibility
Initiative’s Accessible Rich Internet Applications (WAI-ARIA) spec. And one of the
standard widget types addressed in the spec just so happens to be a tabbed
interface. (Fancy that.)

Role playing
To make TabInterface WAI-ARIA-savvy, we need to use what the spec refers to
as ‘roles’ and ‘states’. Both terms mean exactly what you’d assume: roles are the
parts elements are playing within the document and states indicate what each
one is doing. In terms of the tabbed interface, we’ll deal primarily with the
following roles (indicated using the role attribute):

 �application: identifies the page as being an application, which tells
assistive devices to allow JavaScript to manage keystroke events

 tab: denotes that the element is acting as a tab within a tabbed interface

Your essential CD

All the files you’ll require

for this tutorial can be

found on this issue’s CD.

		 .net november 2009 91 next>

Information provider The title attribute is a simple way to provide advisory
information that can be used as the text for our tabs

.net technique javascript

 folder.setAttribute(‘id’, _id + ‘-’ + i);�
 folder.setAttribute(‘aria-labelledby’, _id + ‘-’ + i + ‘-tab’);�
 ...�
 tab.setAttribute(‘id’, _id + ‘-’ + i + ‘-tab’);�
 tab.setAttribute(‘aria-describedby’, _id + ‘-’ + i);�

Further on still, in the bit of code that establishes the first content chunk as
the active one, we set the aria-hidden attribute to false (remember, it was true
in the prototype element) and set the remaining states:

 addClassName(folder, ‘visible’);�
 folder.setAttribute(‘aria-hidden’, ‘false’);�
 tab.setAttribute(‘aria-selected’, ‘true’);�
 _active = folder.getAttribute(‘id’);�
 _cabinet.setAttribute(‘aria-activedescendant’,_active);�

Last but not least, we need to update the swap method to handle changing
the requisite WAI-ARIA properties when closing one tab and opening
another. In the interests of time, I’ll leave that as an exercise for you

 �tablist: denotes the element contains tabs that are part of a tabbed interface
 �tabpanel: denotes the element is a panel of content within a tabbed interface

These roles provide the assistive device with the various players in our
production, but don’t tell the whole story. Without some sort of indication, we
have no idea which tab is associated with which tabpanel. Thankfully, WAI-ARIA
has that covered with two additional state-related attributes:

 �aria-labelledby: an id reference to the associated tab, placed on the tabpanel
 aria-describedby: an id reference to the associated tabpanel, placed on the tab

 �To indicate the current state of the tabbed interface, we’ll also need these:
 �aria-hidden: denotes whether or not the element is visible; takes a value
of true or false

 �aria-selected: denotes whether or not the element is currently activated;
takes a value of true or false

 �aria-activedescendant: placed on the containing element, this is an id
reference to the currently active tabpanel

Set the properties
Setting these properties in the code is rather straightforward – just use
the setAttribute() on the corresponding elements.

We’ll get things rolling by adding the basics near the beginning
of initialize():

 if(!_cabinet.getAttribute(‘id’)) _cabinet.setAttribute(‘id’, _id);�
 // set the ARIA roles�
 _cabinet.setAttribute(‘role’, ‘application’);�
 _index.setAttribute(‘role’, ‘tablist’);�
 _els.div.setAttribute(‘role’, ‘tabpanel’);�
 _els.div.setAttribute(‘aria-hidden’, ‘true’);�
 _els.li.setAttribute(‘role’, ‘tab’);�
 _els.li.setAttribute(‘aria-selected’, ‘false’);�

This puts us in a good position from the get-go by applying the
necessary attributes to the various players, including our prototyped
elements (remember that cloneNode() clones the attributes as well as the
element when supplied an argument of true).

Further down in the code, we’ll need to associate the tabs and tab panels
that are being generated:

 To make TabInterface WAI-
 ARIA-savvy, we need to use
 ‘roles’ and ‘states’

In depth Shawn Henry
on how WAI-ARIA can help
make our sites accessible

Websites are increasingly using functionality that’s not available to
some users with disabilities, especially people who rely on screen
readers and people who can’t use a mouse. Tree controls for site
navigation, drag-and-drop and other complex user interface controls
can be difficult or impossible to use because of limitations in today’s
development technologies.

A new technology to address this problem is on the horizon from the
W3C: WAI-ARIA for Accessible Rich Internet Applications. WAI-ARIA defines
a way to make websites and web applications more accessible to people
with disabilities. It especially helps with dynamic content and advanced
user interface controls developed with Ajax.

A key aspect of WAI-ARIA is defining new ways for functionality to be
provided to screen readers and other assistive technologies. WAI-ARIA
techniques apply to widgets such as buttons, drop-down lists, calendar
functions, tree controls, and others.

Another aspect of WAI-ARIA is providing robust and consistent keyboard
access. Some people cannot use a mouse and use only a keyboard. Even
relatively simple websites can be difficult if they require extensive
keystrokes to navigate. (Try using your website without a mouse.)

WAI-ARIA describes new navigation techniques to mark menus, primary
content, secondary content, banner information and other types of regions
and web structures. Developers can then identify regions of pages and
enable keyboard users to easily move among regions, rather than having
to press tab repeatedly.

Web applications developed with Ajax, DHTML and other technologies
can also have accessibility barriers. For example, if the content of a web
page changes in response to user actions or time- or event-based updates,
that new content may not be available to some people, such as people
who are blind or who have cognitive disabilities and rely on a screen
reader. WAI-ARIA includes technologies to map controls, Ajax live regions
and events to accessibility APIs, including custom controls.

For making advanced web applications accessible and usable to people
with disabilities, developers and users alike are singing the praises of WAI-
ARIA. Check out www.w3.org/WAI/intro/aria.

 Shawn Henry
 Job title Web accessibility evangelist
 Sites www.uiaccess.com
 About Shawn Shawn leads worldwide education and
 outreach activities at the W3C Web Accessibility Initiative

.net technique javascript

<prev 92 .net november 2009

Access all areas The YUI (Yahoo User Interface Library) team is working on
implementing WAI-ARIA throughout its widget library

because, while we may be close, we’re not quite done yet. To truly make
this widget accessible, we need to make it keyboard-aware.

Thinking beyond the mouse
Not everyone uses a mouse. People with disabilities are an obvious example,
but power users often prefer the speed of a keyboard (hence the popularity of
keystroke-based helper apps such as Enso and LaunchBar).

When it comes to keyboard events, WAI-ARIA recommends trying to mimic
the desktop experience as much as possible. In our case, that means users
need to be able to move into the tab list using the tab key. Once on a tab, they
should be able to hit the tab key again to move into the associated tab panel
(in order to have the content read to them) or navigate between the tabs using
the arrow keys and other common commands (Home, End etc).

Movement from content block to content block is handled using the
tabindex attribute: to remove an element from the tab order on a page, you
can set its tabindex to -1; to establish its position within the source (and make
it focusable), you use a value of 0. This technique is often referred to as the
‘roaming tabindex’. In the case of our tabs and tab panels, we need to remove
their prototypes from the tab order by default and then reintroduce the active
ones when they’re activated:

 _els.div.setAttribute(‘aria-hidden’, ‘true’);�
 _els.div.setAttribute(‘tabindex’, ‘-1’);�
 _els.li.setAttribute(‘role’, ‘tab’);�
 _els.li.setAttribute(‘aria-selected’, ‘false’);�
 _els.li.setAttribute(‘tabindex’, ‘-1’);�
 ...�
 if(i === 0){�
 ...�
 folder.removeAttribute(‘aria-hidden’);�
 folder.setAttribute(‘tabindex’, ‘0’);�
 tab.setAttribute(‘aria-selected’, ‘true’);�
 tab.setAttribute(‘tabindex’, ‘0’);�

As with the application of the WAI-ARIA states, we also need to modify
swap() to update the tabindex of the formerly and newly active elements.
Again, I’ll leave that to you. With the tabindex bit taken care of, we can move

on to actually addressing the keyboard events. We’ll start by adding two new
event handlers to each tab:

 tab.onclick = swap;�
 tab.onkeydown = moveFocus;�
 tab.onfocus = swap;�

The first event handler captures all keystrokes, passing them to moveFocus(),
a method we’ll define in a moment. The second new event handler triggers
swap() whenever a tab receives focus. As we’ve taken all but the first tab out
of the tab order, this won’t be invoked yet, but it’s there to capture events we’ll
trigger shortly. Reading a user’s keystrokes is quite simple once you get past the
discrepancies between the standard W3C method of reading the keys and the
Internet Explorer method. Thankfully, the spanner IE throws into the works isn’t
too large and it can be handled easily in a few lines of code:

 function moveFocus(e)�
 {�
 e = (e) ? e : event;�
 var�

 To truly make this widget
 accessible, we need to make
 it keyboard-aware In depth Glenda Sims

invites you to a meeting of
JavaScripters Anonymous

Do you suffer from compulsive use of JavaScript? Symptoms include:
 �being frustrated by the limitations imposed by mobile browsers and
assistive technology when exploring the edges of JavaScript

 �using JavaScript “just for fun” (even when it isn’t necessary)
 �cursing while resuscitating JavaScript that ceased functioning after a
new browser release

 living by the motto “No JavaScript. No Service”
 finding accessibility laws and guidelines overwhelming
 decrying the inability of search engine spiders to handle JavaScript

Is it possible for JavaScript to coexist peacefully with user environment
demands and accessibility requirements? Yes! The answer is progressive
enhancement. Web Standards Project co-founder Steve Champeon defines
this as “a viable (web development) approach that enables the delivery of
information as demanded by the users, while embracing accessibility,
future compatibility, and determining user experience based on the
capabilities of new devices” (bit.ly/RYIEv).

Imagine your site is like fine coffee. The raw content is the coffee
beans. Your semantically marked-up content is the brewed coffee. CSS is
the sugar and JavaScript is the cream. Using progressive enhancement,
you start developing with quality content (beans) then build functional
semantic code (coffee) that works for everyone and on everything.

Once your no-frills site works, you focus on presentation (sugar) and
JavaScript (cream), which provide the rich user experience. No matter how
good your creamy JavaScript and sweet CSS are, you must begin with
quality coffee code.

The core of this approach is the philosophy of ‘universal design’. As my
colleague James Craig puts it, we should “design so thoughtfully it works
for everyone from the start.” By making your site universally satisfying you’ll
offer an experience that adapts to all customers’ taste. This gives you the
freedom to add JavaScript while achieving delicious SEO, sweet accessibility,
hot mobile performance, and robust compatibility with future technologies.

 Glenda Sims
 Job title Senior systems analyst, University of Texas
 Sites www.utexas.edu
 About Glenda is an accessibility and web standards
evangelist for UT, webstandards.org and knowbility.org

Standards bearer Dojo (whose TabContainer is part of the Dijits widget library) was
one of the first JavaScript libraries to implement WAI-ARIA

.net technique javascript

		 .net november 2009 93

 tab = e.target || e.srcElement,�
 key = e.keyCode || e.charCode,�
 pass = true;�
 // keystroke handling goes here�
 if (! pass)�
 {�
 return cancel(e);�
 }�
 }�

In this humble beginning to the moveFocus method, we’ve evened out the event
models, as we did in swap(), before identifying the key that was pressed and the
tab that currently has focus. We’ve also declared a variable, pass, that will define
whether we should trap the keystroke or pass it on to other event handlers.
By default we’ll pass the keystroke on to be handled however it should be, but
when we trap a keystroke we’ll call another new method, cancel, that stops the
event from bubbling (in a cross-browser-compatible way). You can check out
the code for cancel() on the CD. Before we get to the actual handling of the
keystrokes, let’s define another method to control the movement (since that’s
most of what will be happening with each keystroke anyway):

 function move(tab, direction, complete)�
 {�
 if (complete)�
 {�
 if (direction == ‘previous’)�
 {�
 tab.parentNode.childNodes[0].focus();�
 }�
 else�
 {�
 tab.parentNode.childNodes[tab.parentNode.childNodes.length-1].focus();�
 }�
 }�
 else�
 {�
 var target = direction == ‘previous’ ? tab.previousSibling�
 : tab.nextSibling;�
 if (target)�
 {�
 target.focus();�
 }�
 }�
 }�

move() takes three arguments: the current tab (which we know), the direction
(which we’ll define, based on the keystroke), and whether or not the movement
is intended to be made to the end of the tab list (which we’ll also define based

Developing Accessible Widgets
Using ARIA
video.yahoo.com/
watch/4073211/10996186
Watch Todd Kloots give a fantastic
presentation on how to integrate
WAI-ARIA into UI widgets.

WAI-ARIA Best Practices
w3.org/TR/wai-aria-practices/
‘The Roadmap for Accessible Rich
Internet Applications’. The most
recent version of the W3C’s guide
to working with ARIA can always
be found at this URL.

Resources Where to find out more

 About the author
 Name Aaron Gustafson
 Site easy-designs.net
 Areas of expertise Front/back-end development, strategy
 Clients Brighter Planet, Yahoo, Artbox.com
 Which cancelled TV show would you most like to see
 brought back? Pushing Daisies

on the keystroke and will be influenced by the direction argument). With that
method in place, we can return to moveFocus() and set it up to handle the
necessary keystrokes.

We’ll handle them with a simple switch statement:

 switch (key)�
 {�
 case 37:�
 case 38:�
 move(tab, ‘previous’, false);�
 pass = false;�
 break;�
 case 27:�
 tab.blur();�
 pass = false;�
 break;�
 }�

The above statement sets the actions for the left and up arrows (key codes 37
and 38, respectively) and Escape (27). Both arrows will trigger move() to focus
on the previous tab (if it exists) and trap the key press. Escape will remove focus
from the current tab and will, likewise, trap the key press.

Following this model, you should be able to create additional cases for the
right and down arrows (39 and 40, respectively), Home (36) and End (35). Once
complete, give the script a spin in your favourite browser and see how the
whole thing works when using only your keyboard.

Vigilance!
When programming in JavaScript (or any language for that matter), it’s
important to remember that each key you press affects a user’s experience.
Will you wield your power for good by engaging in progressive enhancement,
keeping your scripts flexible and paying attention to accessibility concerns?
I certainly hope so. But, if nothing else, perhaps this short series has opened
your eyes up to how easy it can be to do the right thing.

Note: TabInterface is available under the liberal MIT licence. The latest
version of the script can be downloaded from GitHub: easy-designs.github.
com/tabinterface.js l

