net/technique/JavaScript

create

All the files you'll require
for this tutorial can be

main issue with previous attempts at building one was that they

almost always required you to add extra markup to the document —
such as section wrappers and a list of links that would become the tabs — so
they could be leveraged by JavaScript when constructing the interface.

I wanted to find a way around manually adding that cruft. After all, that
extra markup was useless without JavaScript on, so it made no sense for it to
be hard-coded into the document to begin with. JavaScript is perfectly adept
at manipulating the DOM, so why not use it to inject all of the code necessary
to drive the tabbed interface when we know it can actually be used? In other
words, | was yearning for an unobtrusive way to construct a tabbed interface.

Generating the markup needed for a widget via script is nothing new, but
the challenge lies in determining where to break the content up. I'd always felt
the need for some sort of markup-based hook to indicate where the content
chunks should start and end. Then | realised that headings (h1-h6) — because
they create a document outline — were exactly the kind of natural language
section divider that | was looking for.

. I've always been intrigued by the concept of a tabbed interface. My

<h1>Pumpkin Pie</h1>
<div id="recipe"” class="tabbed">

<hZ>Overview</hi>
<img src="pie.jpg" alt="" [»
<p>Whether you're hosting a festive party or a casual get-together
with friends, our Pumpkin Pie will make entertaining easyl</p>
<dl class="single"><dt>0riginal recipe yield</dt> <dd>1 » 9-inch deep
dish pie</dd></dl>
<dl>
<dt>Prep Time</dt>
<dd>1@<abbr title="minutes">min</abbr>«</dd>
<dt>Cook Time</dt>
<dd>1<abbr title="hour">hr</abbr></dd>
<dt>Ready In</dt>
<dd>1<abbr title="hour">hr</abbr> 1@<abbr
title="minutes">min</abbro-</dd>
</dl>

<hZ>Ingredients</h2>

<1i>1 (9<abbr title="inch">in</abbr>) unbaked deep dish pie

crust</1i>

<1i>¥ cup white sugar
<1i>1 <abbr title="teaspoon">tsp</abbr> ground cinnamon</l1i>
<1i>¥ <abbr title="teaspoon">tsp</abbr> salt
<1i>% <abbr title="teaspoon">tsp</abbr> ground ginger
<1i»¥ <abbr title="teaspoon">tsp</abbr> ground cloves
<1i>2 eggs
<1i»1 can (15<abbr title="ounces"»oz</abbr>) pumpkin puree
<1i»1 can (12<abbr title="fluid cunces">fl oz</abbr>) evaporated

Off the hook This script relies only on a single hook: a class of tabbed. All other
necessary markup is generated by the script when it runs

70 .net/october 2009

Aaron Gustafson

Feeling inspired, | set out to write the script we'll walk through here. As with
any great piece of writing, | needed a goal and a plan of action for reaching
it. What was the script going to do exactly? What were the constraints? What
sort of flexibility needed to be built in? | started with a list of requirements.

It needed to: work in any container-type element (most likely a div, but not
necessarily); separate the content into tabs based on the first encountered
heading level; and offer a good deal of flexibility for styling.

With those guidelines, | decided on the following steps for the code to use
as a blueprint: find any element classified as tabbed (that single class would be
the hook that triggers the script); parse the contents of that element, breaking
the content into chunks based on the first heading level encountered within it;
generate the wrapper markup for each section and insert the content; generate
the tab allowing access to that content; assign the appropriate event handlers to
the tabs; and append it all back into the document.

The steps seemed pretty straightforward except the chunking bit; that would
require a little regular expression magic, but we’ll get to that shortly.

With a plan in place, | threw together a simple page with a recipe for
making a pumpkin pie. Here’s a rough overview of its markup:

<h1>Pumpkin Pie</h1>

<div class="tabbed">

<h2>Overview</h2>

<p>Whether you're hosting a festive party or a casual get-together
with friends, our Pumpkin Pie will make entertaining easy!</p>

<h2>Ingredients</h2>
</div>

Next, | manually tweaked the page to determine what markup | wanted to
use in the final markup and what hooks | needed for styling. | opted for a
fairly traditional structure of wrapper divs, with the whole thing contained
within that initial container classified as tabbed. | decided the script would
use variable names based upon the concept of a filing cabinet (folders, tabs,
etc) and | carried it through to the generated markup as well, classifying each
division as a ‘folder’, with the first one receiving a class of visible since it would
be the one shown by default. | also classified each h2 as ‘hidden’ so they could
be removed from view, and then added the list of tabs to the end as ul.tab-list,
giving the currently active tab a class of, well, active.

Finally, | changed the overall container’s class from tabbed to tabbed-
on. The script itself will look for tabbed and then swap it for this new class

Pumpkin Pie

= Oiverview
* [mgmdies
= Dipvctions
& Nummion

Overview

Wheiher vou'ne banticg a festhve party or a casial ge-logetbier adith friesds, our Punpkis Fie will make cosraisiog ey D

Diriginal rcips vield
1w Sinch deep dish pie

Prep Time
v

Cook Tine
Ihr

Bare bones with no styles applied, the page looks pretty ugly, but is still usable

when it’s ready to run in order to ensure styles are not applied prematurely.
This technique, known as class-swapping, is a great strategy for maintaining
separation between presentation and behaviour. With the markup in place, |
wrote some basic styles to lay out the tabbed interface. Of particular note is
how | chose to hide the inactive content sections:

tabbed-on .folder {
position: absolute;
top: O;

left: -999em;

}

and then make them visible again:

.tabbed-on .folder.visible {
position: static;

}

Armed with a plan and the knowledge of the markup I'd need to make it all
work, | set about writing the script that we’ll now build together. To start things
off, create an object constructor called TablInterface:

function Tablnterface(){}

It’s really nothing more than a function but, as everything in JavaScript is an
object, it’s also an object and it can be instantiated as many times as necessary
on a page.

So, using a library like jQuery, we could say:

Pumpkin Pie
OVERVIEW
Whether you're hosting a festive party or a

casual get-together with friends, our
Pumpkin Pie will make entertaining easy!

Original recipe yield: 1 x 9-inch deep dish
pie

Prep Time: 10min
Cook Time: lhr
Ready In: 1hr 10min
INGREDIENTS

1 (9in) unbaked deep dish pie crust
¥ cup white sugar
1 tsp ground cinnamon

Styled up With basic typographic and colour styles applied, the page looks a little
better and is completely functional, even in the absence of JavaScript

net/technique/lavaScript

Reign in your styles
Don't let them run amok!

If you’ve worked a lot with CSS, you'll know there’s a balance to be struck
with selectors. Make a selector too generic and you could unintentionally
set a property on an element you didn’t mean to target; make it too
specific and your whole style sheet can erupt into an arms race of
increasingly specific selectors when you want to override a property.
When JavaScript enters the picture, things get a bit more complex.

For one, you have to make sure the styles needed for the JavaScript
widget don’t bleed over and begin to affect other elements on the page
(ones that, for instance, share the same class). This can be avoided by
hanging your styles off of a class or id that’s specific to the JavaScript
object. For example, if your script is WickedCool.js, make the wrapper
element .WickedCool or #WickedCool and preface all related selectors
with that unique hook.

Be wary of timing when you apply your widget-related styles. For
example, if a user has JavaScript turned off, you don’t want to have
styles applied to the page that hide content the widget was supposed
to make visible; the user will never be able to see it. This issue is easily
resolved by hanging all of your styles off of a class that’s not used
directly in the markup, instead using one that’s set by JavaScript.

This can be done in a few different ways: change the form of the
employed class (eg from change-me to changed); append -on to the
employed class (eg from tabbed to tabbed-on); add a second class
(eg on). All of these options act as a switch that your script can trigger
when it knows it’s safe for the styles to be applied. It should be noted,
however, that compound class selectors are not supported by IE6, so if
you need to support that browser, don’t consider the third option.

$(document).ready(function(){
S(".tabbed").each(function(){
new Tablnterface();

1;
1;

This little bit of code (which could be replicated easily in the library of your
choice or via native JS methods) runs when the DOM is loaded and scans
through the document, creating a new Tablnterface instance for every element
it encounters with a class of tabbed. Of course, as we only have the skeleton
of a constructor, the Tablnterface object isn’t set up to capture and manipulate
the content that needs tabbing, but we’ll get there.

Construction time
There’s no reason to expose Tablnterface object’s inner workings, so we’'ll
build them all as private members of this object. As we’ll be operating inside
of a function, we’'ll need to create the object’s properties as variables and its
methods as functions. (And yes, functions can contain other functions.) Each
property and method will remain private to Tabinterface unless we expose it by
directly assigning it as a property of this. The only member we’ll expose is the
version of the script (available as TabInterface Version and set as this.Version),
in case anyone wants to implement an extension to the script and wants to see
which version it is. Here’s a basic outline of the properties we need to create:

Version — the current script version

_active — the ID of the active folder (false by default)

_index —a DOM-generated unordered list that will contain the tabs

_els — an object literal containing two properties of its own

li —a DOM-generated list item

div —a DOM-generated division.

Of note is the final property, _els. JavaScript can create elements on the

fly, but cloning an element (using element.cloneNode()) is much faster than
generating a new element (using document.createElement()) each time you
need it. As we’ll be generating multiple divisions around the content chunks
and multiple list items for our tab list, it makes sense to create those
elements before we need them so we can clone them easily later on.

.net/october2009 71 next>

nnet/technique/JavaScript

Once you've added those properties, create two new functions to serve
as the core methods for Tabinterface:
o initialize — the function that will build the tabbed interface
o swap — the method that will handle changing currently displayed content
Because we’ll be doing some class manipulation, include two helper methods,
addClassName and removeClassName, using the following code:

function addClassName(e, ¢){

var classes = (le.className) ? [] : e.className.split(' ");
classes.push(c);

e.className = classes.join('");

}

function removeClassName(e, c){

var classes = e.className.split(' ");

for(var i=classes.length-1; i>=0; i--){
if(classes|i] == c) classes.splice(i, 1);

}

e.className = classes.join(' ");

}

With the preliminaries out of the way, let’s start building out Tabinterface in
earnest. The first thing we need to do is provide a means for the element that
needs tabbing to be passed into the object so we can manipulate it. To do that,
add an argument to the Tablnterface function itself. While you're at it, add a
second argument to accept an iteration number (which we’ll put to good use
in a moment). Name these two arguments _cabinet and _i, respectively, as you
will need to reference them later. Your code should look (roughly) like this:

function Tablnterface(_cabinet, i){
thisVersion = '0.3";

Now let’s tackle initialize(). You'll want to update the initialisation of Tablnterface
(above) to pass in the arguments we just added, if you want to see your work in
action as you build. To allow the script to work efficiently, we’ll generate unique
ids for each of the sections as well as the tabs. To keep things organised and
keep the ids sensible, each should relate back to the id of the containing element
(passed as _cabinet). Of course, _cabinet may not have an id, so we may need to
generate one. We can do that using the passed iterator ('cabinet-' + _i). Once you
have the id, store it to a local variable called _id so you can reference it later:

function initialize(){

// set the id

var _id = el.getAttribute('id') || 'cabinet-' + i;

if(lel.getAttribute(id")) el.setAttribute(id', _id);

Where to find out more

e T THeORTRTSITE
A -
LT -
[NN MR
@ z
e i " e e et
O YRMMEE LESS FONTUMATE
-

Understanding Progressive
Enhancement

For a bit more background

on the concept of progressive
enhancement, check out this
primer in A List Apart, as well as
its two companion articles.
alistapart.com/articles/
understandingprogressive
enhancement

Unobtrusive JavaScript for
Progressive Enhancement

Phil Hawksworth put together this
wonderful demonstration of how
JavaScript can be used in smart
ways, and helpfully it comes

with an in-depth explanation of
how to apply the same techniques
to your projects.

unobtrusify.com

<prev 72 .net/october 2009

| overview || INGREDIENTS 1

Whether you're hosting a festive party
or a casual get-together with friends,
our Pumpkin Pie will make entertaining
easy!

Original recipe yield: 1 x 9-inch deep
dish pie

| Prep Time:
Cook Time:
Ready In:

10min
1hr
lhr 10min

Photo by Paul Gayette, licensed under Creative Commons.

Tab happy With the widget’s styles applied, the pumpkin pie recipe is transformed into
an elegant, compact, tabbed interface

The next step is to divvy up the content by determining the heading level
(h1-h6) upon which to base the chunking. But first, let’s make the node
iteration a little easier (and more cross-browser compatible) by stripping out
any nodes of whitespace that are children of _cabinet:

We must provide a means for

the element that needs tabbing
to be passed into the object

var node = _cabinet.firstChild;
while(node){
var nextNode = node.nextSibling;
if(node.nodeType == 3 &&
I/\S/ test(node.nodeValue)){ _cabinet.removeChild(node); }
node = nextNode;

}

Then, you can determine the heading level of _cabinet’s firstChild by testing
it against a list of known heading levels:

var headers = ['h1', 'h2', 'h3', 'h4', 'h5', 'h6'];
for(var i=0, len=headers.length; i<len; i++){
if(_cabinet.firstChild.nodeName.toLowerCase() == headers][i]){
var _tag = headers[i];
break;
}
}

This code block loops through the header types and tests each against the
lower-cased tag name (nodeName) of the first child element (firstChild) of
the container (_cabinet). When a match is encountered, the script assigns the
correct heading level to _tag and the loop is broken.

Now that we have the heading level, we can chunk the content of _cabinet
using regular expressions and innerHTML, storing the chunks as an array in the
local variable arr. The split | employ uses a regular expression replacement that
inserts an arbitrary, yet uncommon series of characters (| |||) in front of the
opening header tag before the content is split (creating an array) using those
very same characters.

The first member of the array will be empty (because it comes before the
first instance of the heading element), but shift() removes it:

var rexp = new RegExp('<('+ _tag +')", 'ig");
var arr = _cabinet.innerHTML.replace(rexp, "| || |<$1").split('| | ||");
arr.shift();

With the content of _cabinet tucked safely away in arr, you can empty the
container’s contents and do a little class-swapping to turn on your styles:

_cabinet.innerHTML = ";
removeClassName(_cabinet, 'tabbed");
addClassName(_cabinet, 'tabbed-on");

Next, loop through arr's members and create both a folder and a tab for
each content chunk. The folders will be clones of _els.div and should be
appended directly to _cabinet. The tabs will be cloned from _els.li and should
be appended to the ul we created and stored as _index. The text for the tab
will come from the heading element, and classifying the heading as hidden will
allow you to hide it with CSS, keeping users from seeing the same text twice.
Along the way, assign unique ids to the tabs and folders using _id.

While you're at it, add an onclick event handler to the tab (a reference to
the swap method we’ll get to in a moment), classify the first folder as visible
and store its id in the _active variable, and then activate the current tab by
giving it a class of active. Your code should look similar to this:

for(i=0, len=arr.length; i<len; i++){
var folder = _els.div.cloneNode(true);
folder.setAttribute(id', _id +'-' +1);
folder.innerHTML = arrl[i];
addClassName(folder, 'folder");
_cabinet.appendChild(folder);
var heading = folder.getElementsByTagName(_tag)[0];
addClassName(heading, 'hidden');
var tab = _els.li.cloneNode(true);
tab.setAttribute('id', id", _id + ' +i + -tab");
tab.innerHTML = heading.innerHTML;
tab.onclick = swap;
_index.appendChild(tab);
if(i===0){
addClassName(folder, 'visible");
_active = _id + ' +1;
addClassName(tab, 'active');
}
}

Finally, with the loop complete, classify _index as an index and add it to _cabinet:

FINDERS KEEPERS

v el Wis b o hic o weres axd o sy

Ion pesiing that e

Out of the box In The Amanda Project (bit.ly/IKze6), Jason Santa Maria took the tab
metaphor out of its traditional box and integrated it perfectly with the site’s aesthetic

net/technique/lavaScript

2 ...\a@ B e L

R [e v e

\\ HOW THE GAME IS PLAYED

HOW IE.JPx_ﬁJ oo - -

Bimp & ol 4 - Ofch "STANT SAASETT™ fn Segis cwating pmer brociet

Button it An early version of this script was used on Nestlé’s Idol Elimination site. The
id-based hooks generated by this script enabled the addition of Next and Previous buttons

_index.className = 'index’;
_cabinet.appendChild(_index);

With the markup adjustments complete, all that’s left to do is fill in the logic
for the swap event handler. The logic doesn’t need to be very complex; it
simply needs to swap visible folders and activated tabs.

Almost there

To get the currently active folder, tap into the _active property of TabInterface,

as it contains the active folder’s id. Then use the helper methods to move the
appropriate classes from the currently active folder and tab to the newly activated
ones, and update the _active property to refer to the newly opened folder:

function swap(e){

e=(e)?e:event;

var tab = eitarget || e.srcElement;

var folder_id = tab.getAttribute('id").replace(-tab', ");
removeClassName(document.getElementByld(_active + '-tab'), 'active');
removeClassName(document.getElementByld(_active), 'visible');
addClassName(tab, 'active');

addClassName(document.getElementByld(folder_id), 'visible");

_active = folder_id;

}

The final step is to trigger initialize() to run when a new Tablnterface is
created. To do that, add a call to it at the end of the TablInterface function:

initialize();

In less than 100 lines of code, you've build a powerful, yet simple tabbed
interface script, and you did it using a combination of regular expressions,
object-orientation and unobtrusive scripting.

Don’t miss part two of this article in next month’s issue, in which we’ll
improve the flexibility of this script and make it more accessible using WAI-ARIA
roles and states.

Note: Tabinterface is available under the liberal MIT licence. The complete latest
version of the script can be downloaded from GitHub at: easy-designs.qgithub.com/

tabinterface.js.

Name Aaron Gustafson

Site easy-designs.net

Areas of expertise Front- and back-end
development, strategy

Clients Brighter Planet, Yahoo, Artbox.com
Favourite ice cream Mint chocolate chip

.net/october 2009 73

